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Abstract

Motivation Object tracking is an important part for many applications especially for robotic
systems interacting with humans.

Problem statement Ultra-wideband (UWB) systems as well as vision based object trackers
are widely known and used. Both of the systems have their advantages and disadvantages.
UWB systems can provide the location of an object in 3D with an accuracy of approximate
10cm whereas vision based object trackers can only provide the location of an object in 2D
pixel coordinates but with a more precise accuracy than UWB systems.

Approach So why not combine these two sources of information? Exactly this concept
should be developed and evaluated in this semester project. The 3D position measured by the
UWB system should be fused with the 2D pixel coordinates of a visual object tracker with
an Extended Kalman Filter (EKF). A re-detection mechanism for the visual tracker should be
implemented in addition to increase the usability as well as the stability of the system.

Result The proposed system shows a significantly better accuracy compared with the 3D
positions measured by the UWB system. This proof of concept enables to apply this system to
a wide range of applications and also allows further extensions.
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1
Introduction

Object tracking is an important building block for many interactive systems, especially for
robotic systems interacting with humans. State-of-the-art robust approaches detect and recog-
nize a small number of pre-defined object types like humans, birds or cars which were learned
beforehand during the training of the detector. As for many applications tracking of arbitrary
objects is desirable, i.e. a bottle, a hand, an animal, a face etc., these object trackers are not
enough flexible. Online visual tracking on the other hand deals with the challenging task of
tracking an object based on an initial bounding box in an image. This faces the fundamental
problem of very limited labeled data and as a consequence any such tracking approach has to
balance plasticity and drift, in particular when an object should be re-detected after loss of track-
ing. In this semester project a new approach is proposed. A fusion of Ultra-wideband (UWB)
and visual measurements to track an object in 3D by fusing both modalities in a principled
manner.

This semester project focuses on visual tracking with correlation filters. This is typically sus-
ceptible to drift and has low accuracy in the radial direction. The aim is to compensate for this
with an additional existing sensor modality based on multilateration with UWB signals. A sin-
gle tracker consists of multiple UWB units that track a single UWB unit on the target, providing
a 3D position and covariance of the target. Because of the arrangement of the UWB units the
tangential accuracy of the UWB position is relatively low. The visual tracker will provide a
2D measurement. Together both observations should be fused in a principled manner using an
Extended Kalman Filter (EKF) that will combine the strength of both approaches.
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2
Related Work

2.1 Ultra-wideband (UWB)

In this semester project, an UWB system as described in [Tobias Naegeli 2016] was used to
get the location and the velocity of the object, relative to the measurement setup. This UWB
system is manually calibrated with the help of a motion capture system (VICON) and has an
accuracy of ≈ 10cm but also provides a distance in the z-direction in contrast to the used visual
tracker described next, which only gives x- and y-coordinates in pixels. The adaption of the
UWB system used in this semester project is described in chapter 3.

2.2 Vision based object tracking

Because the currently best performing vision based object trackers are mostly built with Kernelized
Correlation Filters (KCF), an implementation of the KCF tracker [Henriques et al. 2015] was
used as vision based object tracker[Haag 2015]. It implements the KCF tracker, with FHOG fea-
tures proposed in [Felzenszwalb et al. 2010] and a few adaption, more precisely speaking, the
default scale adaption proposed in [Danelljan et al. 2014a], a more robust filter update scheme
from [Danelljan et al. 2014b] and a target loss functionality presented in [Bolme et al. 2010].

KCF exploit the fact that translated and scaled patches, as normally used to train discrimina-
tive classifiers, are riddled with redundancies and therefore can be represented as a circulant
matrix. As is standard with correlation filters, the input patches are weighted by a cosine win-
dow to smoothly remove discontinuities at the image boundaries, caused by the cyclic shifts.
Circulant matrices can then be diagonalized with the Discrete Fourier Transform, which re-
duces storage as well as computation by several orders of magnitude. As demonstrated in

3



2 Related Work

[Henriques et al. 2015] kernel regression has the same complexity as its linear counterpart with
this approach.

Thanks to this properties of the circulant matrices, the KCF tracker can be implemented with
only a few lines of code. The bulk of the functionality of the KCF tracker is implemented
in three functions: "train" which implements Equation 2.1, "detect" which implements Equa-
tion 2.2, and "kernel_correlation" which implements Equation 2.3.

α̂ =
ŷ

~̂k~x~x + λ
(2.1)

where ~k~x~x is the first row of the kernel matrix K = C(~k~x~x), andˆdenotes the DFT of a vector.

~̂f(z) = ~̂kxz � ~̂α (2.2)

where ~k~x~z is the kernel correlation of ~x and ~z.

~k~x~x
′
= exp

(
− 1

σ2
(‖~x‖2) + ‖~x′‖2 − 2F−1(

∑
c

~̂xc � ~̂ ′xc)
)

(2.3)

For more detailed information and also the derivation of the presented equations, please see
[Henriques et al. 2015].

As this method is much faster than other algorithms and can be implemented in only a few lines
of code, it makes it really suitable to use on low-power devices as it is common in the robotics
area.

2.3 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) [Chu 2009] in this semester project is used to fuse the 3D
position of the tracked object from the UWB system and the 2D pixel coordinates from the
vision based object tracker. The EKF model and the update steps are described in detail in
chapter 4.

4



3
Setup

The first part of this chapter describes how the different elements of the setup are brought
together. This includes the following steps:

• How the camera was calibrated

• How the camera and the UWB system were mounted

• The matching proceeder which matches the two coordination systems together

This part also explains with the help of which frameworks the mentioned steps were done.

In the second part of this chapter the ROS setup (ROS nodes and messages), which was used, is
described.

3.1 Camera calibration

It is well known that cameras, as the one used in this semester project, suffer from distortion
(radial as well as tangential) [Szeliski 2010], [Bradski ]. The required constants to remove this
distortions as well as the intrinsic camera matrix, are determined by the camera calibration.

In this semester project, the camera calibration framework of the OpenCV library [Bradski ]
was used, which is easy to handle and well known to work properly.

5



3 Setup

3.2 UWB and camera mounting

The UWB system and the camera are mounted in a way, that the center of their relative coordi-
nate systems have a fixed, not too large displacement. This setup is shown in Figure 3.1. In this
setup the origin of the camera coordinate system is a bit above of the one from the UWB system
(indicated by the blue arrow in Figure 3.1), which is positioned in the middle of the monitor
screen.

Figure 3.1: UWB and camera setup.

3.3 Matching frames

The coordinate system of the UWB setup and the one of the camera are not the same, as sketched
in Figure 3.2. As the goal of this semester project is to fuse the locations provided by the UWB
system and by the visual tracker, the locations must be transformed from one to the other. To
achieve this, the location of the object in 3D must be available from both systems (UWB and
vision).

For the vision system the ArUco [Garrido-Jurado et al. 2014] library and an ArUco marker were
used to get the 3D coordinates of the object, as explained in subsection 3.3.1.

The scale, the translation as well as the rotation between the two coordinate systems were then
determined with the matching proceeder, explained in subsection 3.3.3, with the help of the
Kabsch algorithm [Kabsch 1976].

3.3.1 ArUco

ArUco [Garrido-Jurado et al. 2014] presents itself as a minimal library for augmented reality
applications, based on OpenCV. ArUco is a marker system specialized for camera pose estima-
tion in different applications such as augmented reality, robot localization, etc. ArUco contains
an algorithm for the generation of markers as well as marker boards and an algorithm for the
automatic detection of markers. A third contribution of ArUco is a solution to the occlusion
problem in augmented reality applications which is not of interest for this semester project.

6



3.3 Matching frames

UWBx

UWBy

UWBz

~r

Visionz

Visiony

Visionx

Figure 3.2: The two coordinate systems relative to each other.

To get 3D vision coordinates, an ArUco marker was mounted on the object, as shown in Fig-
ure 3.3, right in front of an UWB target and an application was written which uses the ArUco
library to read out the 3D coordinates of detected ArUco markers and saves them for later usage
by the matching proceeder.

Figure 3.3: ArUco marker and UWB target.

3.3.2 Kabsch

The Kabsch algorithm [Kabsch 1976] calculates the optimal rotation matrix and translation vec-
tor that minimize the root mean squared deviation between two sets of corresponding points. In
this semester project the Kabsch algorithm determines the optimal rotation matrix and transla-
tion vector between the coordination systems of the UWB system an the one of the camera.

7



3 Setup

3.3.3 Matching proceeder

For the matching proceeder a Matlab script was written, shown in Listing 3.1, which performs
the following steps:

• Calculates the mean of the UWB and the vision (ArUco) coordinates

• Centralizes the coordinates of both systems

• Calculates the scale from the centralized coordinates

• Scales the vision (ArUco) coordinates

• Executes the Kabsch algorithm to calculate the rotation matrix U, the translation ~r and
the least root mean squared error lrms

To transform 3D points from the UWB coordinate system to the vision coordinate system the
translation ~r is applied to the 3D coordinate and then the rotation matrix U and the scale are
applied as shown in Equation 3.1


xVision

yVision

zVision

 =
1

scale
· U
(

xUWB

yUWB

zUWB

− ~r
)

(3.1)

To transform the covariance matrix C from the UWB coordinate system to the vision coordinate
system, a new rotation matrix U′ ∈ R6×6 has to be applied to the covariance matrix in the UWB
coordinate system like

C′ =
1

scale2
U′CU′T (3.2)

where

U′ =

U 0

0 U

 (3.3)

The determined rotation matrix U and the translation vector ~r applied on a set of measured
points by the UWB systems together with the set of measured points by ArUco results in a data
set as shown in Figure 3.4

Listing 3.1: Matching proceeder

1 % C a l c u l a t e mean
2 mean_uwb = mean ( uwb ( 1 : 3 , : ) , 2 ) ;
3 mean_aruco = mean ( a r u c o ( 1 : 3 , : ) , 2 ) ;
4

5 % n o r m a l i z e d a t a
6 a r u c o _ c e n t r e d ( 1 , : ) = ( a r u c o ( 1 , : ) − . . .
7 mean_aruco ( 1 ) ∗ ones ( 1 , l e n g t h ( a r u c o ( 1 , : ) ) ) ) ;
8 a r u c o _ c e n t r e d ( 2 , : ) = ( a r u c o ( 2 , : ) − . . .

8



3.4 The Robot Operating System (ROS) setup

9 mean_aruco ( 2 ) ∗ ones ( 1 , l e n g t h ( a r u c o ( 1 , : ) ) ) ) ;
10 a r u c o _ c e n t r e d ( 3 , : ) = ( a r u c o ( 3 , : ) − . . .
11 mean_aruco ( 3 ) ∗ ones ( 1 , l e n g t h ( a r u c o ( 1 , : ) ) ) ) ;
12

13 uwb_cen t red ( 1 , : ) = uwb ( 1 , : ) − . . .
14 mean_uwb ( 1 ) ∗ ones ( 1 , l e n g t h ( uwb ( 1 , : ) ) ) ;
15 uwb_cen t red ( 2 , : ) = uwb ( 2 , : ) − . . .
16 mean_uwb ( 2 ) ∗ ones ( 1 , l e n g t h ( uwb ( 2 , : ) ) ) ;
17 uwb_cen t red ( 3 , : ) = uwb ( 3 , : ) − . . .
18 mean_uwb ( 3 ) ∗ ones ( 1 , l e n g t h ( uwb ( 3 , : ) ) ) ;
19

20 % c a l c u l a t e s c a l e
21 s c a l e = norm ( uwb_cen t red ) / norm ( a r u c o _ c e n t r e d ) ;
22

23 % S c a l e a r u c o
24 a r u c o = s c a l e . ∗ a r u c o ;
25

26 % Perform Kabsch
27 [U, r , l rms ] = Kabsch ( aruco , uwb ) ;

3.4 The Robot Operating System (ROS) setup

In this semester project three different ROS setups were used to perform the tasks of recording
the video from the camera as well as recording the measurements from the UWB system, and
collecting the data required for the matching proceeder and for the object tracking task.

The first setup to record the video and the measurement of the UWB system is described in
subsection 3.4.1.

The setup to gain the required data to perform the matching proceeder, explained in subsec-
tion 3.3.3, is described in subsection 3.4.2.

The last ROS setup that was used in this semester project, is the setup introduced in subsec-
tion 3.4.3, which is used for the main task of object tracking.

3.4.1 Recording setup

In the recording setup, shown in Figure 3.5, a rosbag node records the messages from the two
nodes publish_image and uwb. The messages "/camera/video" from the publish_image node
is the image stream from the camera. The node uwb sends the messages "/uwb/tracker" which
consists of the position, the velocity of the target as well as their covariances.

9
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Figure 3.4: Matching of the position set of ArUco and UWB.

publish_image

uwb

rosbag

/camera/video

/uwb/tracker

Figure 3.5: Block diagram of the ROS nodes and messages for the recording setup.

3.4.2 Kabsch setup

To save the required data to perform the matching proceeder described in subsection 3.3.3,
the setup, shown in Figure 3.6, was used. In this ROS setup the node uwb_aruco receives
the messages "/camera/video" and "/uwb/tracker". It saves the positions measured by the UWB
system directly and performs the ArUco marker detection to get the positions detected by ArUco
and also saves them.

10



3.4 The Robot Operating System (ROS) setup

rosbag uwb_aruco
/camera/video, /uwb/tracker

Figure 3.6: Block diagram of the ROS nodes and messages for the Kabsch setup.

3.4.3 Tracking setup

This ROS setup, shown in Figure 3.7, is used for the main task of tracking an object. In this
setup, the node vision_tracker performs the object tracking on the images it receives from the
node rosbag in the messages "/camera/video". It also receives the fused positions in the mes-
sages "/fusing/coordinates" from the EKF for the case, that the vision tracker loses the object
and has to re-detect it. The node vision_tracker then publishes the position of the tracked object
in the messages "/vision_tracker/vision_coordinates". The node fusing receives the positions
measured by the UWB system in the messages "/uwb/tracker" as well as the positions of the ob-
ject detected by the node vision_tracker in the messages "/vision_tracker/vision_coordinates".
With an EKF, described in chapter 4, the node fusing estimates the position of the tracked
object.

rosbag vision_tracker

fusing

/camera/video /vision_tracker/vision_coordinates

/uwb/tracker
/fusing/coordinates

Figure 3.7: Block diagram of the ROS nodes and messages for the tracking setup.

11



3 Setup

12



4
Fusing of the two measurement
sources

The position of the object is estimated with an Extended Kalman Filter (EKF), using a model
of the system and the measurements from the UWB system and also from the visual tracker. A
block diagram of this pipeline is shown in Figure 4.1.

UWB T ∈ SE (3)

Camera Visual Tracker

EKF

UWB coordinates [x1, x2, x3, ẋ1, ẋ2, ẋ3]
T

[x1

x3
, x2

x3
]Timage

restimated , ṙestimated

Figure 4.1: Block diagram of the EKF pipeline.

4.1 Extended Kalman Filter (EKF)

4.1.1 System Model

The state ~x = [~r, ~̇r]T of our model consists of a position ~r ∈ R3 and a velocity ~̇r ∈ R3. The
discrete process model with timestep ∆T is given by

~x(k) = ~qk−1(~x(k − 1), ~v(k − 1)) (4.1)

13



4 Fusing of the two measurement sources

with
qk−1(~x(k − 1), ~v(k − 1)) = B~x(k − 1) + ~v(k − 1) (4.2)

where

B =

I3 ∆T

0 I3

 (4.3)

and
~v(k − 1) ∼ N (~0,Q) (4.4)

where

Q =

I3 0

0 qv

 (4.5)

and qv ∈ R3×3 is the velocity covariance of the process noise.

There are two possible measurements. The first measurement is a direct measurement of the
state ~x from ultra-wideband (UWB) multilateration:

~z1(k) = ~hk,1(~x(k), ~w1(k)) (4.6)

with
~hk,1(x(k), w1(k)) = H1~x(k) + ~w1(k) (4.7)

where
H1 = I6

and
~ω1(k) ∼ N (~0,R1)

where R1 ∈ R6×6 is the covariance of the UWB measurement. The second measurement is a
projection of the position ~r as seen by a camera:

~z2(k) = ~hk,2(~x(k), ~w2(k)) (4.8)

with
~hk,2(~x(k), ~w2(k)) = H2(~x(k)) + ~w2(k) (4.9)

where
H2(~x) = [

x1
x3
,
x2
x3

]T ∈ R2 (4.10)

and
~ω2(k) ∼ N (~0,R2) (4.11)

where R2 ∈ R2×2 is the covariance of the camera measurement.

4.1.2 The Extended Kalman Filter steps

There are two steps which have to be performed in an iterative fashion, when running the EKF.

14



4.1 Extended Kalman Filter (EKF)

Step 1: Prior update/Prediction step

In the first step, a prediction for the mean of the states ~̂xp(k) and the co-variance matrix Pp(k)
is calculated from the linearized system model.

~̂xp(k) = qk−1(~̂xm(k − 1), 0) = B~̂xm(k − 1) (4.12)

Pp(k) = A(k − 1)Pm(k − 1)AT (k − 1) + L(k − 1)QLT (k − 1) (4.13)

where

A(k − 1) =
∂qk−1(~̂xm(k − 1), 0)

∂~x
(4.14)

=
∂

∂~x

(
B~x(k − 1) + ~v(k − 1)

)
(4.15)

= B(k − 1) (4.16)

L(k − 1) =
∂qk−1(~̂xm(k − 1), 0)

∂~v
(4.17)

=
∂

∂~v

(
B~x(k − 1) + ~v(k − 1)

)
(4.18)

= I6 (4.19)

and with the initial values ~̂xm(0) = x0 and Pm(0) = 0. Therefore equation 4.13 becomes

Pp(k) = B(k − 1)Pm(k − 1)BT (k − 1) + Q

Step 2: A posteriori update/Measurement update step

In the second step, the information gained from the measurements is used to perform an a
posteriori update, resulting in a updated mean of the states ~̂xm(k) and an updated co-variance
matrix Pm(k).

K(k) = Pp(k)HT (k)
(

H(k)Pp(k)HT (k) + M(k)R(k)MT (k)
)−1

(4.20)

~̂xm(k) = ~̂xp(k) + K(k)
(
~z(k)−

~hk,1(~̂xp(k), 0)

~hk,2(~̂xp(k), 0))

) (4.21)

Pm(k) =
(
I−K(k)H(k)

)
Pp(k) (4.22)

15



4 Fusing of the two measurement sources

where

H(k) =
[
∂hk(~̂xp(k),0)

∂~x

]
(4.23)

=

 ∂
∂~x

(
H1~̂x(k) + ~ω1(k)

)
∂
∂~x

(
H2(~̂x(k)) + ~ω2(k)

)
 (4.24)

=


I6
1
x̂3

0 − x̂1

x̂2
3

0 0 0

0 1
x̂3
− x̂2

x̂2
3

0 0 0

 (4.25)

M(k) =
[
∂hk(~̂xp(k),0)

∂ ~w

]
(4.26)

=

 ∂
∂~ω

(
H1~̂x(k) + ~ω1(k)

)
∂
∂~ω

(
H2(~̂x(k)) + ~ω2(k)

)
 (4.27)

= I8 (4.28)

Therefore equation 4.20 becomes

K(k) = Pp(k)HT (k)
(

H(k)Pp(k)HT (k) +

R1 0

0 R2

)−1

4.1.3 Implementation

The implementation of the EKF was done in a Python script within the ROS environment. The
ROS nodes used in this semester project and their function are listed in Table 4.1.

For more details as well as for the used parameters, please see [Ziegler 2016].
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4.1 Extended Kalman Filter (EKF)

Node name File/Script name Function

publish_image publish_image_node
Publishes images, recorded with a camera,

as ROS messages.

uwb uwb_tracker_node
Publishes the information provided by the

UWB system as ROS messages.

uwb_aruco uwb_aruco_node.py

Receives ROS messages from the uwb and

publish_image node, detects ArUco

markers and saves the locations provided by

both systems into a hdf5 file.

vicon_aruco vicon_aruco_node.py

Receives ROS messages from the VICON

system and publish_image node, detects

ArUco markers and saves the locations

provided by both systems into a hdf5 file.

vision_tracker vision_tracker_node

The KCF tracker publishes the 2D pixel

coordinates as ROS messages as well as

boolean ROS messages which indicate,

if the object is lost or not.

fusing fusing_node.py

The EKF receives ROS messages from

the vision_tracker and uwb node and

publishes the fused positions as ROS messages.

visualization visualization_node

Displays the positions provided by the UWB,

the vision tracker and by the EKF on top

of the picture.

validation validation_node.py
Records the required information to perform

the evaluation.

Table 4.1: Table with the implemented ROS nodes and their function.
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4 Fusing of the two measurement sources

Figure 4.2: 3D plot of the points measured by the UWB (red), the points detected by the visual tracker
(blue) and the fused positions (green).
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4.1 Extended Kalman Filter (EKF)

Figure 4.3: Recorded picture with the point measured by the UWB (red), the point detected by the visual
tracker (blue) and the fused position (green). The radii of the UWB and EKF circle indicate
the covariances of the measured/estimated position.
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4 Fusing of the two measurement sources
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5
Re-detection of the object in the visual
tracker

5.1 Motivation

The implementation of the Kernelized Correlation Filters (KCF) tracker in [Haag 2015] does
not provide any sophisticated re-detection. To be able to re-detect the object, it has to pass the
location, where the tracker has lost it. Otherwise the tracker is not able to re-detect the object
as it does not search at other locations than the one of the object’s last appearance.

As with our system the Extended Kalman Filter (EKF) gets the location of the object measured
by the Ultra-wideband (UWB) system also if the vision based tracker can’t detect the object,
this information can be used to re-detect the object in the image.

This information feedback from the EKF to the Visual Tracker is shown in Figure 4.1.

5.2 Method

The re-detection mechanism works as follows. If the object can’t be detected by the KCF
tracker, the re-detection mode is activated and the detection parameters (PSR and "response
threshold") are adapted. The KCF tracker now takes the 2D location provided by the EKF and
tries to detect the object, with the adapted detection parameters, at these new locations. The
KCF tracker needs to detect the object in five consecutive frames to deactivate the re-detection
mode and to reset the detection parameters to the standard values. This ensures, that the visual
tracker re-detects the object and not something else. The whole mechanism is presented in the
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5 Re-detection of the object in the visual tracker

pseudo code 5.1.

Algorithm 5.1 Re-detection mechanism
1: while true do
2: if target not detected then
3: Adapt PSR and response threshold
4: Set re-detection = true
5: else
6: if Object was detected in 5 consecutive frames then
7: Reset PSR and response threshold
8: Set re-detection flag = false
9: if re-detection flag = true then

10: Take 2D position from EKF
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6
Experiments and Results

6.1 Experiments

To measure the accuracy of the developed system, a ROS setup similar as described in subsec-
tion 3.4.3 was used. The Extended Kalman Filter (EKF) works in the camera coordinate system
with approximately 80Hz . To eases the whole handling, the experiments were recorded with
rosbag and then afterwards off-line evaluated with a separate Python script.

To have a ground truth to compare with, the 3D coordinates of the tracked object measured by
a motion capture system (VICON) were additionally recorded.

For the comparison between the accuracy of the UWB system and the one of the EKF, both
systems were compared with the mentioned ground truth by the root mean squared error

rmse =

√√√√ 1

N − 1

N∑
i

(
(xm,i − xV,i)2 + (ym,i − yV,i)2 + (zm,i − zV,i)2

)
and by the root mean squared error of only the x and y axis

rmsexy =

√√√√ 1

N − 1

N∑
i

(
(xm,i − xV,i)2 + (ym,i − yV,i)2

)
where the subfix m stands for measurement and represents coordinates which either come from
the UWB system or from the EKF. The subfix V on the other hand stands for VICON which
is the ground truth in this experiments. N is, as common for rmse, the number of points in the
data set.
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6 Experiments and Results

6.2 Results

In several recorded experiments, the rmse and the rmsexy of the EKF were significantly lower
compared with the rmse and the rmsexy of the UWB system. The results of some experiments
are listed in Table 6.1. A 3D plot of the measured coordinates by the VICON system (ground
truth), the UWB system and the coordinates fused by the EKF from the data set of experiment
number 1 is shown in Figure 6.1. Figure 6.2 shows the dataset of experiment number 5, where
the visual tracker has to re-detect the object.

Experiment number rmse of UWB rmse of EKF rmsexy of UWB rmsexy of EKF

1 0.0667 0.0350 0.0621 0.0270

2 0.0771 0.0364 0.0734 0.0260

3 0.1304 0.0379 0.1275 0.0312

4 0.1169 0.0344 0.1126 0.0265

5* 0.1273 0.1195 0.1159 0.1055

Table 6.1: Table with listed rmse and rmsexy of the UWB system and the EKF for the different experi-
ments.

* In experiment number 5 the object goes several times out of camera view and therefore the
visual tracker has to re-detect the object. During the periods in which the visual tracker has lost
the object, the resulting positions of the EKF are not longer better than the positions measured
by the UWB system.
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6.2 Results

Figure 6.1: 3D plot of the coordinate points measured by the UWB system (red), the points measured
by the VICON system (magenta) and the fused positions (green) of the experiment number
1.
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6 Experiments and Results

Figure 6.2: 3D plot of the coordinate points measured by the UWB system (red), the points measured
by the VICON system (magenta) and the fused positions (green) of the experiment number
5 in which the object goes several times out of the camera view and the visual tracker has to
re-detect the object.
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7
Conclusion and Outlook

7.1 Conclusion

In this semester project I have explored the proposed approach of fusing UWB and vision for a
robust object tracking in 3D.

The results show that the proposed method of fusing less accurate 3D coordinate measurements
from the UWB system with more precise 2D pixel coordinate measurements from the vision
based tracker with an Extended Kalman Filter (EKF) has a significantly improved accuracy
compared to the coordinates measured solely by the UWB system. The idea of combining these
two sources has therefore proven to be beneficial. The additionally implemented re-detection
mechanism for the visual tracker also performs well under normal conditions.

This semester project was meant to be a proof of concept. The proposed method could be
applied in many applications in different fields as robotics, human-computer-interaction, enter-
tainment, rescue, etc., to mention only a few.

As part of this semester project I have also implemented the approach in a modular fashion
within the ROS environment and made it public accessible on GitHub[Ziegler 2016].

7.2 Limitations

The current EKF implementation does not consist of an outlier-detection. Since the standard
EKF is not robust to outliers, noisy input signals may result in an unstable state estimation.
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7 Conclusion and Outlook

7.3 Outlook

The UWB system used in this semester project runs with a frequency of approximately 80Hz
as well as the implemented EKF. If an UWB system with a higher frequency would be used,
the currently in Python implemented EKF won’t be able to process all the measurements pro-
vided by the UWB system and by the vision based tracker. To encounter this problem, a faster
implementation in C++ would be conceivable.

The proposed fusing method contains a re-detection mechanism for the cases, when the ob-
ject goes out of the camera view or moves to fast. The currently implemented re-detection
mechanism is however dependent of the object and the environment and some detection pa-
rameters need to be adjusted to achieve good re-detection performance. A more sophisticated
re-detection system could improve the stability as well as the usability of the proposed method.

So far the used UWB system has to be calibrated manually, for example with a motion capture
system (VICON). With an ArUco marker and the ArUco library [Garrido-Jurado et al. 2014] an
automated calibration proceeder for the UWB system could be developed which would simplify
the setup of the whole system.

Up to now, for the vision based tracker the desired object has to be marked manually by a user
which restricts the usability of the system in many real-world applications. Automatic visual
target detecting with the help of the information provided by the UWB system would widen the
application area of the proposed system.

In this semester project only one object at a time can be tracked. In many applications tracking
of multiple targets is of interest. A multi target tracking system consisting of multiple objects
equipped with distinguishable UWB targets and a vision based multi target tracker would allow
to track multiple object simultaneously.
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